Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sign languages are used as a primary language by approximately 70 million D/deaf people world-wide. However, most communication technologies operate in spoken and written languages, creating inequities in access. To help tackle this problem, we release ASL Citizen, the first crowdsourced Isolated Sign Language Recognition (ISLR) dataset, collected with consent and containing 83,399 videos for 2,731 distinct signs filmed by 52 signers in a variety of environments. We propose that this dataset be used for sign language dictionary retrieval for American Sign Language (ASL), where a user demonstrates a sign to their webcam to retrieve matching signs from a dictionary. Through our generalizable baselines, we show that training supervised machine learning classifiers with our dataset achieves competitive performance on metrics relevant for dictionary retrieval, with 63% accuracy and a recall-at-10 of 91%, evaluated entirely on videos of users who are not present in the training or validation sets.more » « less
-
As conversational agents and digital assistants become increasingly pervasive, understanding their synthetic speech becomes increasingly important. Simultaneously, speech synthesis is becoming more sophisticated and manipulable, providing the opportunity to optimize speech rate to save users time. However, little is known about people’s abilities to understand fast speech. In this work, we provide the first large-scale study on human listening rates. Run on LabintheWild, it used volunteer participants, was screen reader accessible, and measured listening rate by accuracy at answering questions spoken by a screen reader at various rates. Our results show that blind and low-vision people, who often rely on audio cues and access text aurally, generally have higher listening rates than sighted people. The findings also suggest a need to expand the range of rates available on personal devices. These results demonstrate the potential for users to learn to listen to faster rates, expanding the possibilities for human-conversational agent interaction.more » « less
-
Developing successful sign language recognition, generation, and translation systems requires expertise in a wide range of fields, including computer vision, computer graphics, natural language processing, human-computer interaction, linguistics, and Deaf culture. Despite the need for deep interdisciplinary knowledge, existing research occurs in separate disciplinary silos, and tackles separate portions of the sign language processing pipeline. This leads to three key questions: 1) What does an interdisciplinary view of the current landscape reveal? 2) What are the biggest challenges facing the field? and 3) What are the calls to action for people working in the field? To help answer these questions, we brought together a diverse group of experts for a two-day workshop. This paper presents the results of that interdisciplinary workshop, providing key background that is often overlooked by computer scientists, a review of the state-of-the-art, a set of pressing challenges, and a call to action for the research community.more » « less
An official website of the United States government

Full Text Available